|
Ta có: $\int\limits_{1}^{2}\frac{2x^{2}\sqrt{x}+x^{3}\sqrt{x}-\frac{3}{x}+1}{x^{2}}dx$ $=\int\limits_1^2\left(2\sqrt{x}+x\sqrt x-\frac{3}{x^3}+\frac{1}{x^2}\right)dx$ $=\left(\frac{4}{3}x\sqrt x+\frac{2}{5}x^2\sqrt x+\frac{3}{2x^2}-\frac{1}{x}\right)\left|\begin{array}{l}2\\1\end{array}\right.=\frac{512\sqrt2-283}{120}$
|