|
a)Xét : In=∫dx(x2+1)2=∫(x2+1)−1;∀x∈Z+ Đặt : {u=(x2+1)−n⇒du=−2nxdx(1+x2)n+1dv=dx⇒v=x Lúc đó : In=x(x2+1)n+2n∫x2dx(x2+1)n+1=x(xn+1)n+2n∫(x2+1)−1(x2+1)n+1dx =x(x2+1)n+2nIn−2nIn+1 ⇒In+1=x2n(x2+1)n+(2n−1),In2n ⇒In=x2(n−1)(x2+1)n−1+(2n−3).In−12(n−1)(1);n=2;3;4....
|