|
Đặt: I=π2∫0cos2010xsin2010x+cos2010xdx,J=π2∫0sin2010xsin2010x+cos2010xdx. Ta có: I+J=π2∫0dx=π2. Đặt t=π2−x. Suy ra: I=0∫π2cos2010(π2−t)sin2010(π2−t)+cos2010(π2−t)d(π2−t) =0∫π2−sin2010tsin2010t+cos2010tdt =π2∫0sin2010tsin2010t+cos2010tdt=J Từ đó, suy ra: I=J=π4 .
|