|
I=e∫13xlnx+x+lnx+3√xlnx+1dx I=e∫12(xlnx+1)+lnx+x+lnx+1√xlnx+1dx I=e∫1[2√xlnx+1+(lnx+1)(x+1)√xlnx+1]dx I=e∫1[2√xlnx+1+(x+1)lnx+1√xlnx+1]dx I=e∫1[2(x+1)′√xlnx+1+(x+1)√xlnx+1′]dx I=e∫1[2(x+1)′√xlnx+1+2(x+1)√xlnx+1′]dx I=e∫1[2(x+1)√xlnx+1]′dx I=2(x+1)√xlnx+1|e1 I=23√(1+e)2−4
|