|
a) Ta có: a−1+(b+c)−1a−1−(b+c)−1=1a+1b+c1a−1b+c=a+b+cb+c−a Và: 1+b2+c2−a22bc=(2bc+b2+c2)−a22bc =(b+c)2−a22bc=(b+c+a)(b+c−a)2bc ⇒a−1+(b+c)−1a−1−(b+c)−1(1+b2+c2−a22bc)(a+b+c)2 =a+b+cb+c−a.(b+c+a)(b+c−a)2bc.1(a+b+c)2=12bc b) (a12+2a+2a12+1−a12−2a−1)(a12+1a12) =[√a+2(√a+1)2−√a−2(√a+1)(√a−1)](√a+1√a)=[√a+2√a+1−√a−2√a−1]1√a =a+√a−2−(a−√a−2)a−1.1√a=2a−1
|