|
Đặt : $u =ln^2x\Rightarrow du=\frac{2lnx}{x}$ $\begin{array}{l} dv = xdx \Rightarrow v = \frac{{{x^2}}}{2}\\ I = \frac{{{x^2}}}{2}{\ln ^2}x\left| {_1^e} \right. - \int_1^e {x\ln xdx} = \frac{{{e^2}}}{2} - \int_1^e {x\ln xdx} \end{array}$ Đặt : $u=lnx\Rightarrow du=\frac{dx}{2}$ $dv=xdx\Rightarrow v=\frac{x^2}{2}$ Suy
ra :$\int_1^e {x\ln xdx} = \frac{{{x^2}}}{2}\ln x\left| {_1^e -
\frac{1}{2}} \right.\int_1^e {xdx} = \frac{{{e^2}}}{2} -
\frac{1}{4}\left( {{e^2} - 1} \right)$ Suy ra : $I = \frac{1}{4}\left( {{e^2} + 1} \right)$
|