|
$\,\,\int\limits_0^{\frac{\pi }{2}} {c{\rm{o}}{{\rm{s}}^2}x.c{\rm{os}}4xdx} = \int\limits_0^{\frac{\pi }{2}} {\frac{{1 + c{\rm{os}}2x}}{2}.c{\rm{os}}4xdx} = \int\limits_0^{\frac{\pi }{2}} {\left( {\frac{1}{2}.c{\rm{os}}4x + \frac{1}{2}c{\rm{os}}2x\cos 4x} \right)dx} $ $=\int\limits_{0}^{\frac{\pi}{2} } (\frac{1}{2} cos4x+\frac{1}{4} cos2x+\frac{1}{4}cos6x )dx$ $=(\frac{1}{8}sin4x+\frac{1}{4}sin2x+\frac{1}{24} sin6x)\mathop |\nolimits_0^\frac{\pi}{2}=0 $
|