|
Vì ${\mathop{\rm t}\nolimits} {\rm{anx}} + \cot 2x = \frac{{\sin {\rm{x}}\sin 2x + \cos x\cos 2x}}{{\cos x\sin 2x}} = \frac{{\cos x}}{{\cos x\sin 2x}}$$ = \frac{1}{{\sin 2x}}$ $ \Rightarrow f(x) = \sin 3x\sin 4x\sin 2x = \frac{1}{2}\left( {\cos x - c{\rm{os}}7x} \right)\sin 2x $$ = \frac{1}{2}\sin 2x\cos x - \frac{1}{2}\sin 2x\cos 7x\\ $ $= \frac{1}{4}\left( {{\mathop{\rm s}\nolimits} {\rm{inx}} + \sin 3x} \right) - \frac{1}{4}\left( {\sin ( - 5x) + \sin 9x} \right) $ $= \frac{1}{4}{\mathop{\rm s}\nolimits} {\rm{inx}} + \frac{1}{4}{\mathop{\rm s}\nolimits} {\rm{in3x + }}\frac{1}{4}{\mathop{\rm s}\nolimits} {\rm{in5x - }}\frac{1}{4}{\mathop{\rm s}\nolimits} {\rm{in9x}}\\ \Rightarrow \int {f(x)dx} = - \frac{1}{4}\cos x - \frac{1}{{12}}c{\rm{os}}3x - \frac{1}{{20}}c{\rm{os}}5x + \frac{1}{{36}}c{\rm{os}}9x + C $
|