Tính tích phân:  $I = \int\limits_{\frac{1}{2}}^2 {\left( {x + 1 - \frac{1}{x}} \right){e^{x + \frac{1}{x}}}dx} $
Đặt $f(x) = \left( {x + 1 - \frac{1}{x}} \right){e^{x + \frac{1}{x}}}$
 $\begin{array}{l}
t = x + \frac{1}{x}\,\, \Leftrightarrow \,\,\,\mathop {{x^2} - tx + 1}\limits_{\frac{1}{2} 
\le x \le 2} \,\,\,\,\, \Leftrightarrow \,x = \left[ \begin{array}{l}
\frac{{t - \sqrt {{t^2} - 4} }}{2} \le 1\\
\frac{{t + \sqrt {{t^2} - 4} }}{2} \ge 1
\end{array} \right.\\
x = \frac{1}{2}\,\,\,\, \Rightarrow \,\,\,\,\,t = \frac{5}{2}\\
x = 1\,\,\,\,\,\, \Rightarrow \,\,\,\,\,t = 2\\
x = 2\,\,\,\,\,\, \Rightarrow \,\,\,\,\,t = \frac{5}{2}
\end{array}$
    Suy ra: $dx = \left[ \begin{array}{l}
\frac{1}{2}\left( {1 - \frac{t}{{\sqrt {{t^2} - 4} }}} 
\right)dt\,\,\,\,\,\,\,\,\,\,\\,\frac{1}{2} \le x \le 1\\
\frac{1}{2}\left( {1 + \frac{t}{{\sqrt {{t^2} - 4} }}} 
\right)dt\,\,\,\,\,\,\,\,\,1 \le x \le 2
\end{array} \right.$
   Từ đó: $I = \int\limits_{\frac{1}{2}}^2 {f\left( x \right)dx}  = \int\limits_{\frac{1}{2}}^1 {f\left( 

x \right)dx}  + \int\limits_1^2 {f\left( x \right)dx} $
 $\begin{array}{l}
I = \frac{1}{2}\int\limits_{\frac{5}{2}}^2 {\left( {\frac{{t - \sqrt {{t^2} - 4} }}{2} + 1 - \frac{{t + 

\sqrt {{t^2} - 4} }}{2}} \right)} {e^t}.\left( {\frac{{\sqrt {{t^2} - 4}  - t}}{{\sqrt {{t^2} - 4} }}} 

\right)dt - \\
\,\,\, - \frac{1}{2}\int\limits_{\frac{5}{2}}^2 {\left( {\frac{{t + \sqrt {{t^2} - 4} }}{2} + 1 - 

\frac{{t - \sqrt {{t^2} - 4} }}{2}} \right)} {e^t}.\left( {\frac{{\sqrt {{t^2} - 4}  + t}}{{\sqrt 

{{t^2} - 4} }}} \right)dt\\
\,\,\,\, =  - \frac{1}{2}\int\limits_2^{\frac{5}{2}} {\left( {1 - \sqrt {{t^2} - 4} } \right)} \left( {1 - 

\frac{t}{{\sqrt {{t^2} - 4} }}} \right){e^t}dt + \\
\,\,\,\,\, + \,\frac{1}{2}\int\limits_2^{\frac{5}{2}} {\left( {1 + \sqrt {{t^2} - 4} } \right)} \left( {1 

+ \frac{t}{{\sqrt {{t^2} - 4} }}} \right){e^t}dt
\end{array}$
    
$I = \int\limits_2^{\frac{5}{2}} {\left( {\sqrt {{t^2} - 4}  + \frac{t}{{\sqrt {{t^2} - 4} }}} 

\right){e^t}dt}  = \int\limits_2^{\frac{5}{2}} {\sqrt {{t^2} - 4} {e^t}dt + } 

\int\limits_2^{\frac{5}{2}} {\frac{{t{e^t}}}{{\sqrt {{t^2} - 4} }}dt} $

    Đặt $\,\,\,u = {e^{t\,\,\,\,}}\,\,\,\, \Rightarrow du = {e^t}dt$
          $\,\,dv = \frac{t}{{\sqrt {{t^2} - 4} }}\,\,\,\, \Rightarrow v = \sqrt {{t^2} - 4} $
              $\int\limits_2^{\frac{5}{2}} {2\frac{t}{{\sqrt {{t^2} - 4} }}} {e^t}dt = \left. 

{{e^t}\sqrt {{t^2} - 4} } \right]_2^{\frac{5}{2}} - \int\limits_2^{\frac{5}{2}} {\sqrt {{t^2} - 4} } 
{e^t}dt$
            $1)\,\,\,I = \int\limits_0^{\ln 3} {\frac{{dx}}{{\sqrt {{e^x} + 1} }}} 
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2)\,\,\,J = \int\limits_0^2 {x{e^{ - 
\frac{x}{2}dx}}} $
              $ \Rightarrow \,\,\,\int\limits_2^{\frac{5}{2}} {\sqrt {{t^2} - 4} } {e^t}dt + 
\int\limits_2^{\frac{5}{2}} {\frac{t}{{\sqrt {{t^2} - 4} }}} {e^t}dt = 
\frac{3}{2}{e^{\frac{5}{2}}}$
       ĐS :    $I = \frac{3}{2}{e^{\frac{5}{2}}}$
Vote cho bạn.lời giải hay –  vytieubac 17-07-12 08:16 AM
nhờ có bạn mà mình đã biết được mình sai và nhầm chỗ nào.vote cho bạn ^^ –  taradi_timem 27-06-12 10:43 PM

Bạn cần đăng nhập để có thể gửi đáp án

Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003