|
Đặt $u = \,\,\ln x\,\, \Rightarrow \,du = \frac{{dx}}{x}$ $\begin{array}{l} x = 1\,\,\,\,\,\,\,\,\,\, \Rightarrow \,\,\,u = 0\\ x = \sqrt e \,\,\,\,\, \Rightarrow \,\,\,u = \frac{1}{2}\\ \,\,\,I = \int\limits_0^{\frac{1}{2}} {\frac{{du}}{{\sqrt {1 - {u^2}} }} = \left. {arc\sin \,u} \right]_0^{\frac{1}{2}}} = arc\sin \frac{1}{2} = \frac{\pi }{6} \end{array}$
|