|
Đặt :$\begin{array}{l} t = \cos X, - 1 \le t \le 1\\ \Rightarrow c{\rm{os}}2X + m.\cos X + 4 = 2{\cos ^2}X - 1 + m.\cos X + 4 = 2{t^2} + mt + 3 \end{array}$ Hàm số $(1)$ xác định $\begin{array}{l} \forall X \in R\\ \Leftrightarrow 2{t^2} + mt + 3 > 0\\ \forall t \in \left[ { - 1,1} \right] \end{array}$ Đặt $f(t) > 0\forall t \in \left[ { - 1,1} \right]$ $ \Leftrightarrow \left[ \begin{array}{l} \Delta < 0(2)\\ \left\{ \begin{array}{l} \Delta \ge 0\\ \left[ \begin{array}{l} - 1 < 1 < {t_1} < {t_2}\\ {t_1} \le {t_2} < - 1 < 1 \end{array} \right. \end{array} \right.(3) \end{array} \right.$ Ta có: $\Delta = {m^2} - 24;f(1) = m + 5;f( - 1) = - m + 5$ (HV-18) $\begin{array}{l} (2) \Leftrightarrow - 2\sqrt 6 < m < 2\sqrt 6 \\ (3) \Leftrightarrow \left\{ \begin{array}{l} \left\{ {m \le - 2\sqrt 6 } \right. \vee m \ge 2\sqrt 6 \vee m \ge 2\sqrt 6 \\ \left\{ \begin{array}{l} f(1) > 0\\ \frac{s}{2} - 1 > 0 \end{array} \right. \vee \left\{ \begin{array}{l} f( - 1) > 0\\ \frac{s}{2} + 1 < 0 \end{array} \right. \end{array} \right.\\ \left\{ \begin{array}{l} f(1) > 0\\ \frac{s}{2} - 1 > 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} m + 5 > 0\\ - \frac{m}{4} - 1 > 0 \end{array} \right. \Leftrightarrow - 5 < m < - 4\\ \left\{ \begin{array}{l} f( - 1) > 0\\ \frac{s}{2} + 1 < 0 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - m + 5 > 0\\ - \frac{m}{4} + 1 < 0 \end{array} \right. \Leftrightarrow 4 < m < 5\\ suy\,\,ra\,\,\,(3) \Leftrightarrow \left[ \begin{array}{l} - 5 < m \le - 2\sqrt 6 \\ 2\sqrt 6 \le m \le 5 \end{array} \right.(5) \end{array}$ Hợp các tập nghiệm ở $(4)$và $(5)$ ta có $ - 5 < m < 5$. Vậy ${\rm{D = ( - 5, 5)}}$
|