vì các bi đỏ khác nhau nên số cách xếp bi đỏ vào 7 ô trống là: $A^{3}_{7}$
xếp 3 viên bi xanh giống nhau vào 4 ô còn lại có $C^{3}_{4}$ cách
$\Omega$= $A^{3}_{7}$$\times $$C^{3}_{4}$= 840 cách
Vì khi xếp 3 viên bi đỏ và 3 viên bi xanh liền nhau thì còn 1 vị trí trống nên ta có số cách xếp là 3!*3!=36 cách ( vì 3 bi đỏ khác nhau nên số hoán vị của 3 bi đỏ là 3! cách và coi như có 3 vị trí thì 1 vị trí cho bi đỏ, 1 vị trí cho bi xanh, 1 vị trí trống nên có 3! cách xắp xếp 3 vị trí này)
xác suất: P=$\frac{36}{840}$=0,0429=4,29% (kết quả lấy sấp xỉ)
pn coi thử đúng k!