ta xét k∈N,k≥2có : (1+1k−1−1k)2=1+1(k−1)2+1k2+2k−1−2k(k−1)−2k =1+1(k−1)2+1k2+2k−1−2k−1+2k−2k=1+1(k−1)2+1k2 ⇒√112+1(k−1)2+1k2=1+1k−1−1k khi đó S= 1+11−12+1+12−13+...+1+199−1100 =99- 1100
ta xét k∈N,k≥2có : (1+1k−1−1k)2=1+1(k−1)2+1k2+2k−1−2k(k−1)−2k =1+1(k−1)2+1k2+2k−1−2k−1+2k−2k=1+1(k−1)2+1k2 ⇒√112+1(k−1)2+1k2=1+1k−1−1k khi đó S= 1+11−12+1+12−13+...+1+199−1100 =100- 1100