Câu 1: (x+4)^{2} - 6\sqrt{x^{3}+3x}=13 (ĐKXĐ: x>0)<=>(x+4)^{2}-13 = 6\sqrt{x^{3}+3x}
<=>(x+4)^4 -26(x+4)^2+169=36(x^3+3x)
<=>(x^4+16x^3+96x^2+256x+256)-(26x^2+208x+416)+169=36x^3+108x
<=>x^4-20x^3+70x^2-60x+9=0
<=>(x-1)(x-3)(x^2-16x+3)=0
<=> x=1 hoặc x=3 hoặc x=8\pm \sqrt{61} (TMĐK)
Câu 2: 2\sqrt[3]{x-2}+5\sqrt{x+1}-12=0 (ĐKXĐ: x > -1)
<=>(2\sqrt[3]{x-2}-2)+(5\sqrt{x+1}-10)=0
<=>\frac{8(x-2)-8}{4\sqrt[3]{(x-2)^2}+4\sqrt[3]{x-2}+4}+\frac{5(x+1-4)}{\sqrt{x+1} +2}=0
<=>\frac{8(x-3)}{4\sqrt[3]{(x-2)^2}+4\sqrt[3]{x-2}+4}+\frac{5(x-3)}{\sqrt{x+1}+2}=0
<=>(x-3)(\frac{8}{4\sqrt[3]{(x-2)^2}+4\sqrt[3]{x-2}+4}+\frac{5}{\sqrt{x+1}+2})=0 (*)
Vì \frac{8}{4\sqrt[3]{(x-2)^2}+4\sqrt[3]{x-2}+4}+\frac{5}{\sqrt{x+1}+2}>0 Với mọi x > -1
Nên (*) <=> x-3=0 <=> x=3