ta có (a+b+\sqrt{2(a+c)}) ^{3}= (a+b+ \sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}})^{3} \geq \frac{27}{2}(a+b)(a+c)TT suy ra ta cần CM\sum \frac{1}{(a+b)(a+c)}\leq12\Leftrightarrow \frac{2(a+b+c)}{(a+b)(b+c)(c+a)}\geq12\Leftrightarrow 6(a+b)(b+c)(c+a)\geq a+b+cmà 9(a+b)(b+c)(c+a)\geq8(a+b+c)(ab+bc+ca)như vậy ta cân CM ab+bc+ca \geq \frac{3}{16} \Leftrightarrow 16(ab+bc+ca) \geq3có ab+bc+ca \leq16abc(a+b+c) \leq \frac{16}{3}(ab+bc+ca)^{2} \Rightarrow ab+bc+ca\geq \frac{3}{16}Dấu "=" $\Leftrightarrow a=b=c=\frac{1}{4}$
ta có $ (a+b+
2\sqrt{a+c})^3>(a+b+\sqrt{2(a+c)}) ^{3}= (a+b+ \sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}})^{3} \geq \frac{27}{2}(a+b)(a+c)
TT suy ra ta cần CM\sum \frac{1}{(a+b)(a+c)}\leq12
\Leftrightarrow \frac{2(a+b+c)}{(a+b)(b+c)(c+a)}\geq12\Leftrightarrow 6(a+b)(b+c)(c+a)\geq a+b+c
mà 9(a+b)(b+c)(c+a)\geq8(a+b+c)(ab+bc+ca)
như vậy ta cân CM ab+bc+ca \geq \frac{3}{16} \Leftrightarrow 16(ab+bc+ca) \geq3
có ab+bc+ca \leq16abc(a+b+c) \leq \frac{16}{3}(ab+bc+ca)^{2} \Rightarrow ab+bc+ca\geq \frac{3}{16}$
Không xảy ra
dấu b
ằng