pt⇔(x2+2)(x2+k2−4k+3)=2k+1⇔(x2+2).x2+(x2+2)(k2−4k+3)=2k+1⇔x4+x2(k2−4k+5)+(2k2−10k+5)=0Do k2−4k+5>0 nên pt có nghiệm⇔{Δ≥02k2−10k+5≤0⇔{k4+18k2+5≥8k3(đúng theo cosi)5−√152≤k≤5+√152Leftrightarrowk∈[5−√152;5+√152]
pt⇔(x2+2)(x2+k2−4k+3)=2k+1⇔(x2+2).x2+(x2+2)(k2−4k+3)=2k+1⇔x4+x2(k2−4k+5)+(2k2−10k+5)=0Do k2−4k+5>0 nên pt có nghiệm⇔{Δ≥02k2−10k+5≤0⇔{k4+18k2+5≥8k3(đúng theo cosi)5−√152≤k≤5+√152$
\Leftrightarrow k\in \left[ \frac{5-\sqrt{15}}{2};\frac{5+\sqrt{15}}{2}\right]$