Ta có :$t^{t}=(\frac{t}{2})^{8}\Leftrightarrow t^{t}=\frac{t^{8}}{2^{8}}\Leftrightarrow t^{8-t}=2^{8}=4^{4}$Vì $t>0 $ nên $t^{8-t}=4^{4}\Rightarrow t=4$
Ta có :$t^{t}=(\frac{t}{2})^{8}\Leftrightarrow t^{t}=\frac{t^{8}}{2^{8}}\Leftrightarrow t^{8-t}=2^{8}=4^{4}$Vì $t>0 $ nên $t^{t-8}=4^{4}\Rightarrow t=4$
Ta có :$t^{t}=(\frac{t}{2})^{8}\Leftrightarrow t^{t}=\frac{t^{8}}{2^{8}}\Leftrightarrow t^{8-t}=2^{8}=4^{4}$Vì $t>0 $ nên $t^{8
-t}=4^{4}\Rightarrow t=4$