gt \Leftrightarrow \frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}=1 (1)đặt x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c} (x,y,z>0 ) (1) \Leftrightarrow xy+yz+zx=1VT of đpcm TT\frac{1}{\sqrt{1+\frac{1}{x^{2}}}}+\frac{1}{\sqrt{1+\frac{1}{y^{2}}}}+\frac{1}{\sqrt{1+\frac{1}{z^{2}}}} ta có \frac{1}{\sqrt{1+\frac{1}{x^{2}}}}=\frac{1}{\sqrt{\frac{x^{2}+1}{x^{2}}}}=\frac{x}{\sqrt{(x+y)(x+z)}} ( do $ab+bc+ca=1)\leq \frac{1}{2}(\frac{x}{x+y}+\frac{x}{x+z})TT \Rightarrow VT\leq \frac{3}{2}dấu "=" \Leftrightarrow a=b=c=\sqrt{3}$
gt
\Leftrightarrow \frac{1}{bc}+\frac{1}{ca}+\frac{1}{ab}=1 (1)đặt
x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c} (
x,y,z>0 ) (1)
\Leftrightarrow xy+yz+zx=1VT of đpcm TT
\frac{1}{\sqrt{1+\frac{1}{x^{2}}}}+\frac{1}{\sqrt{1+\frac{1}{y^{2}}}}+\frac{1}{\sqrt{1+\frac{1}{z^{2}}}} ta có
\frac{1}{\sqrt{1+\frac{1}{x^{2}}}}=\frac{1}{\sqrt{\frac{x^{2}+1}{x^{2}}}}=\frac{x}{\sqrt{(x+y)(x+z)}} ( do $
xy+
yz+
zx=1
)\leq \frac{1}{2}(\frac{x}{x+y}+\frac{x}{x+z})
TT \Rightarrow VT\leq \frac{3}{2}
dấu "=" \Leftrightarrow a=b=c=\sqrt{3}$