1sinaA≥1sinA⇔sina−1A≤1 (luôn đúng)Ttự ⇒1sinaA+1sinbB+1sincC≥1sinA+1sinB+1sinC(⋆)1sinA+1sinB+1sinC≥1cosA2+1cosB2+1cosB2(⋆⋆) 1cosA2≥1x√cosA2⇔cosx−1A2≤1 (luôn đúng)Ttự ⇒1cosA2+1cosB2+1cosC2≥1x√cosA2+1y√cosB2+1z√cosC2(⋆⋆⋆)~~~~~~~~~~Từ (⋆),(⋆⋆),(⋆⋆⋆)⇒1sinaA+1sinbB+1sincC≥1x√cosA2+1y√cosB2+1z√cosC2Kết hợp dữ kiện đề bài suy ra dấu bằng xảy raTức là {x=y=z=1a=b=c=1△ABCđều⇒ha=hb=hc,la=lb=lc⇒ đpcm
1sinaA≥1sinA⇔sina−1A≤1 (luôn đúng)Ttự
⇒1sinaA+1sinbB+1sincC≥1sinA+1sinB+1sinC(⋆)$\
color{blue}{\frac{1}{\sin A}+\frac 1{\sin B} +\frac 1{\sin C} \ge \frac 1{\cos \frac A2}+\frac 1{\cos \frac B2}+\frac 1{\cos \frac B2} (\star \star )
} \frac 1{\cos \frac A2} \ge\frac 1{\sqrt[x]{\cos \frac A2}} \Leftrightarrow \cos^{x-1}\frac A2 \le 1
(luônđúng)Ttự\Rightarrow \frac 1{\cos \frac A2}+\frac 1{\cos \frac B2}+\frac 1{\cos \frac C2} \ge \frac 1{\sqrt[x]{\cos \frac A2}}+\frac 1{\sqrt[y]{\cos \frac B2}}+\frac 1{\sqrt[z]{\cos \frac C2}} (\star \star \star)
Từ(\star),(\star \star),(\star \star \star)
⇒1sinaA+1sinbB+1sincC≥1x√cosA2+1y√cosB2+1z√cosC2$KếthợpdữkiệnđềbàisuyradấubằngxảyraTứclà${x=y=z=1a=b=c=1△ABCđều\Rightarrow h_a=h_b=h_c,l_a=l_b=l_c$$\Rightarrow$ đpcm