a) △AHB∼△BCD (g.g)Vì: ^ABH=^BDC (sole trong)^AHB=^BCD=90o.b) BD=√BC2+AB2=15. (cm)$\triangle AHD \sim \triangle BHA(g.g)Vì:\widehat{DAH}=\widehat{ABD}(cùngcộngvới\widehat{ADB}=90^o)\widehat{AHD}=\widehat{AHB}=90^o$$\Rightarrow \frac{AB}{BD}=\frac{AH}{AD}\Rightarrow AH=\frac{AB.AD}{BD}=\frac{12.9}{15}=7,2$ $(cm)$c) $S_{ABC}=\frac{1}{2}.AB.BC=54$ $(cm^2)$
a)
△AHB∼△BCD (g.g)Vì:
^ABH=^BDC (sole trong)
^AHB=^BCD=90o.b)
BD=√BC2+AB2=15.
(cm)$\triangle AHD \sim \triangle BA
D(g.g)
Vì:\widehat{DAH}=\widehat{ABD}
(cùngcộngvới\widehat{ADB}=90^o
)\widehat{AHD}=\widehat{
DAB}=90^o$$\Rightarrow \frac{AB}{BD}=\frac{AH}{AD}\Rightarrow AH=\frac{AB.AD}{BD}=\frac{12.9}{15}=7,2$ $(cm)$c) $S_{ABC}=\frac{1}{2}.AB.BC=54$ $(cm^2)$