Gọi x=tanA,y=tanB,z=tanCTa có tanA.tanB.tanC=tanA+tanB+tanC⇔tanA(tanB.tanC−1)=tanB+tanC⇔tanB+tanC1−tanB.tanC=−tanA$\Leftrightarrow \tan (A+B)=\tan (\pi -C)⇔A+B+C=π\Leftrightarrow T = \cot A+ \cot B + \cot C \ge \sqrt 3 $
Gọi
x=tanA,y=tanB,z=tanCTa có
tanA.tanB.tanC=tanA+tanB+tanC⇔tanA(tanB.tanC−1)=tanB+tanC⇔tanB+tanC1−tanB.tanC=−tanA$\Leftrightarrow \tan (B
+C)=\tan (\pi -
A)
⇔A+B+C=π\Leftrightarrow T = \cot A+ \cot B + \cot C \ge \sqrt 3 $