A=(x2+xy+y24+594y2+8x+y+1992 =(x+y2)2+594y2+8x+y+1992 =(x+y2+4)2+594y2−3y+1992−16 =(x+y2+4)2+594(y2−1259y)+1976 =(x+y2+4)2+594(y−659)2+1976−959⇒minA=19755059⇔y=659;x=−4359
A=(x2+xy+y24+594y2+8x+y+1992 =(x+y2)2+594y2+8x+y+1992 =(x+y2+4)2+594y2−3y+1992−16 =(x+y2+4)2+594(y2−1259y)+1976 =(x+y2+4)2+594(y−659)2+1976−959$\Rightarrow
\min
A=1975\tfrac{50}{59}\Leftrightarrow y=\frac{6}{59};x=-4\tfrac{3}{59}$