pt ⇔(x+1)3−8=3(3√3x+5−2)⇔(x−1)(x2+4x+7)=3(3x+5−83√(3x+5)2+23√3x+5+4)⇔(x−1)(x2+4x+7−93√(3x+5)2+23√3x+5+4)=0⇒x=1∗Ta có −93√(3x+5)2+23√3x+5+4≥−93=−3$\Rightarrow x^2+4x+7-\frac{9}{\sqrt[3]{(3x+5)^2}+2\sqrt[3]{3x+5}+4}\geq x^2+4x+4=(x+2)^2=0Dấu"="xảyrakhi{x+2=03√3x+5+1=0\Rightarrow \left\{ x=−2x=−2 \right.$$\color{red}{\Rightarrow=-2} $
pt
⇔(x+1)3−8=3(3√3x+5−2)⇔(x−1)(x2+4x+7)=3(3x+5−83√(3x+5)2+23√3x+5+4)⇔(x−1)(x2+4x+7−93√(3x+5)2+23√3x+5+4)=0⇒x=1∗Ta có
−93√(3x+5)2+23√3x+5+4≥−93=−3$\Rightarrow x^2+4x+7-\frac{9}{\sqrt[3]{(3x+5)^2}+2\sqrt[3]{3x+5}+4}\geq x^2+4x+4=(x+2)^2
\geq 0
Dấu"="
xảyrakhi{x+2=03√3x+5+1=0\Rightarrow \left\{
x=−2x=−2 \right.$$\color{red}{\Rightarrow=-2} $