⇔1∫0x2+1−2x2(1+x2)2dx=1∫0dx1+x2−21∫0x2dx(1+x2)2⇔1∫0dx1+x2−21∫0x2+1−1(1+x2)2dx$\Leftrightarrow2\int\limits_{0}^{1}\frac{dx}{(1+x^2)^2}-\int\limits_{0}^{1}\frac{dx}{1+x^2}Đặtx=tanu⇔{dx=ducos2ux2+1=1cos2u\Rightarrow 2\int\limits_{0}^{\frac{\pi }{4}}\frac{cos^4u.du}{cos^2u}-\int\limits_{0}^{\frac{\pi }{4}}du$$\Leftrightarrow2\int\limits_{0}^{\frac{\pi }{4}}\cos^2u.du-\int\limits_{0}^{\frac{\pi }{4}}du$$\Leftrightarrow\int\limits_{0}^{\frac{\pi }{4}}cos2u.du=\frac{1}{2}sin2u|^{\frac{\pi}{4}}_{0} $
⇔1∫0x2+1−2x2(1+x2)2dx=1∫0dx1+x2−21∫0x2dx(1+x2)2⇔1∫0dx1+x2−21∫0x2+1−1(1+x2)2dx$\Leftrightarrow2\int\limits_{0}^{1}\frac{dx}{(1+x^2)^2}
+3\int\limits_{0}^{1}\frac{dx}{1+x^2}
Đặtx=tanu
⇔{dx=ducos2ux2+1=1cos2u\Rightarrow 2\int\limits_{0}^{\frac{\pi }{4}}\frac{cos^4u.du}{cos^2u}-\int\limits_{0}^{\frac{\pi }{4}}du$$\Leftrightarrow2\int\limits_{0}^{\frac{\pi }{4}}\cos^2u.du
+3\int\limits_{0}^{\frac{\pi }{4}}du$$\Leftrightarrow\int\limits_{0}^{\frac{\pi }{4}}cos2u.du
+4\int\limits_{0}^{\frac{\pi }{4}}du=\frac{1}{2}sin2
u|^{\frac{\pi}{4}}_{0}+4u|^{\frac{\pi}{4}}_{0} $