ĐK tự làmPT $\Leftrightarrow 4(\sqrt 3 \sin x+\cos x) +\dfrac{2}{\sin 2x}=4\dfrac{\cos 2x }{\sin 2x}$$\Leftrightarrow 2(\sqrt 3 \sin x+\cos x)\sin 2x +1 =2\cos 2x$$\Leftrightarrow 2(\sqrt 3 \sin x+\cos x)\sin 2x +\sin^2 x +\cos^2 x=2(\cos^2 x-\sin^2 x)$$\Leftrightarrow 2(\sqrt 3 \sin x+\cos x)\sin 2x +3\sin^2 x -\cos^2 x=0$$\Leftrightarrow (\sqrt 3 \sin x+\cos x)(2\sin 2x +\sqrt 3\sin x -\cos x)=0$ Dễ rồi
ĐK tự làmPT $\Leftrightarrow 4(\sqrt 3 \sin x+\cos x) +\dfrac{2}{2\sin 2x}=4\dfrac{\cos 2x }{\sin 2x}$$\Leftrightarrow 2(\sqrt 3 \sin x+\cos x)\sin 2x +1 =2\cos 2x$$\Leftrightarrow 2(\sqrt 3 \sin x+\cos x)\sin 2x +\sin^2 x +\cos^2 x=2(\cos^2 x-\sin^2 x)$$\Leftrightarrow 2(\sqrt 3 \sin x+\cos x)\sin 2x +3\sin^2 x -\cos^2 x=0$$\Leftrightarrow (\sqrt 3 \sin x+\cos x)(2\sin 2x +\sqrt 3\sin x -\cos x)=0$ Dễ rồi
ĐK tự làmPT $\Leftrightarrow 4(\sqrt 3 \sin x+\cos x) +\dfrac{2}{\sin 2x}=4\dfrac{\cos 2x }{\sin 2x}$$\Leftrightarrow 2(\sqrt 3 \sin x+\cos x)\sin 2x +1 =2\cos 2x$$\Leftrightarrow 2(\sqrt 3 \sin x+\cos x)\sin 2x +\sin^2 x +\cos^2 x=2(\cos^2 x-\sin^2 x)$$\Leftrightarrow 2(\sqrt 3 \sin x+\cos x)\sin 2x +3\sin^2 x -\cos^2 x=0$$\Leftrightarrow (\sqrt 3 \sin x+\cos x)(2\sin 2x +\sqrt 3\sin x -\cos x)=0$ Dễ rồi