ĐK tự làmPT $\Leftrightarrow 4(\sqrt 3 \sin x+\cos x) +\dfrac{2}{2\sin 2x}=4\dfrac{\cos 2x }{\sin 2x}⇔2(√3sinx+cosx)sin2x+1=2cos2x\Leftrightarrow 2(\sqrt 3 \sin x+\cos x)\sin 2x +\sin^2 x +\cos^2 x=2(\cos^2 x-\sin^2 x)⇔2(√3sinx+cosx)sin2x+3sin2x−cos2x=0\Leftrightarrow (\sqrt 3 \sin x+\cos x)(2\sin 2x +\sqrt 3\sin x -\cos x)=0$ Dễ rồi
ĐK tự làmPT
⇔4(√3sinx+cosx)+2sin2x=4cos2xsin2x⇔2(√3sinx+cosx)sin2x+1=2cos2x⇔2(√3sinx+cosx)sin2x+sin2x+cos2x=2(cos2x−sin2x)⇔2(√3sinx+cosx)sin2x+3sin2x−cos2x=0⇔(√3sinx+cosx)(2sin2x+√3sinx−cosx)=0 Dễ rồi