Vì a,b,c>0 nên áp dung bddt cauchy cho 2 số ta co:\frac{a^2}{a+2b}+\frac{a+2b}{9}\geq\frac{2}{3}a \Leftrightarrow \frac{a^2}{a+2b}\geq \frac{5a-2b}{9}(1)Tương tự ta co:\frac{b^2}{b+2c}\geq \frac{5b-2c}{9}(2)\frac{c^2}{c+2a}\geq \frac{5c-2a}{9}(3)Từ (1),(2),(3) ta co:\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\geq \frac{3(a+b+c)}{9}=1 (vì a+b+c=3)Dấu bằn xảy ra \Leftrightarrow a=b=c=1
Vì
a,b,c>0 nên áp dung bddoo
oooooooooooooooooooo\frac{a^2}{a+2b}+\frac{a+2b}{9}\geq\frac{2}{3}a \Leftrightarrow \frac{a^2}{a+2b}\geq \frac{5a-2b}{9}(1)Tương tự ta co:
\frac{b^2}{b+2c}\geq \frac{5b-2c}{9}(2)\frac{c^2}{c+2a}\geq \frac{5c-2a}{9}(3)Từ
(1),(2),(3) ta co:
\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\geq \frac{3(a+b+c)}{9}=1 (vì a+b+c=3)Dấu bằn xảy ra
\Leftrightarrow a=b=c=1