1a2+2+1b2+2+1c2+2≤1⇔2a2+2+2b2+2+2c2+2≤2⇔a2a2+2+b2b2+2+c2c2+2≥1Áp dụng BĐT Bunhiaa2a2+2+b2b2+2+c2c2+2≥(a+b+c)2a2+b2+c2+6=a2+b2+c2+2ab+2bc+2caa2+b2+c2=1
1a2+2+1b2+2+1c2+2≤1⇔2a2+2+2b2+2+2c2+2≤2⇔a2a2+2+b2b2+2+c2c2+2≥1Áp dụng BĐT Bunhia
a2a2+2+b2b2+2+c2c2+2≥(a+b+c)2a2+b2+c2+6$=\frac{a^2+b^2+c^2+2ab+2bc+2ca}{a^2+b^2+c^2
+6}=1$