Câu 2:Đặt: z=x+yi,x,y∈R.Hệ trở thành: {|x+(y−2)i|=|x+yi||x+(y−1)i|=|(x−1)+yi|⇔{x2+(y−2)2=x2+y2x+(y−1)2=(x−1)2+y2⇔{4−4y=0−2y=−2x⇔x=y=1Vậy z=1+i.
Câu 2:Đặt:
z=x+yi,x,y∈R.Hệ trở thành:
{|x+(y−2)i|=|x+yi||x+(y−1)i|=|(x−1)+yi|$\Leftrightarrow \left\{\begin{array}{l}x^2+(y-2)^2=x^2+y^2\\x
^2+(y-1)^2=(x-1)^2+y^2\end{array}\right.$$\Leftrightarrow \left\{\begin{array}{l}4-4y=0\\-2y=-2x\end{array}\right.\Leftrightarrow x=y=1$Vậy $z=1+i$.