Gọi z=x+yi(x,y∈R)|z|−2ˉz=3(−1+2i)⇔√x2+y2−2(x−yi)=3(−1+2i)⇔{√x2+y2−2x=−32y=6⇔{√x2+9=2x−3(1)y=3$(1) \Leftrightarrow \begin{cases} 2x - 3 \ge 0\\ {x^2} + 9 = 4{x^2} - 12x + 9 \end{cases} \Leftrightarrow \begin{cases}x \ge \frac{3}{2} \\ 3{x^2} - 12x = 0\end{cases} \Leftrightarrow x=2Vậyz = 2 + 3i.|z| + |z{|^2} = \sqrt {13} + 13.$
Gọi
z=x+yi(x,y∈R)|z|−2ˉz=3(−1+2i)⇔√x2+y2−2(x−yi)=3(−1+2i)⇔{√x2+y2−2x=−32y=6⇔{√x2+9=2x−3(1)y=3$(1) \Leftrightarrow \begin{cases} 2x - 3 \ge 0\\ {x^2} + 9 = 4{x^2} - 12x + 9 \end{cases} \Leftrightarrow \begin{cases}x \ge \frac{3}{2} \\ 3{x^2} - 12x = 0\end{cases} \Leftrightarrow x=
4Vậyz =
4 + 3i
.|z| + |z{|^2} =
5 + 25 = 3
0.$