Ta có:F=\frac{a^4}{b^4}+1+\frac{b^4}{a^4}+1-(\frac{a^2}{b^2}+\frac{b^2}{a^2})+\frac{a}{b}+\frac{b}{a}-2 \ge2\sqrt{\frac{a^4}{b^4}.1}+2\sqrt{\frac{b^4}{a^4}.1}-(\frac{a^2}{b^2}+\frac{b^2}{a^2})+\frac{a}{b}+\frac{b}{a}-2 =\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{a}{b}+\frac{b}{a}-2 =(\frac{a}{b}+\frac{b}{a})^2+\frac{a}{b}+\frac{b}{a}-4Đặt \frac{a}{b}+\frac{b}{a}=t\Rightarrow |t|\ge2Xét hàm: f(t)=t^2+t-4 trên (-\infty-2]\cup[2;+\infty) ta được: \min_{|t|\ge2} f(t)=-2\Leftrightarrow t=-2Vậy MinF=2\Leftrightarrow a=-b
Ta có:
F=\frac{a^4}{b^4}+1+\frac{b^4}{a^4}+1-(\frac{a^2}{b^2}+\frac{b^2}{a^2})+\frac{a}{b}+\frac{b}{a}-2 \ge2\sqrt{\frac{a^4}{b^4}.1}+2\sqrt{\frac{b^4}{a^4}.1}-(\frac{a^2}{b^2}+\frac{b^2}{a^2})+\frac{a}{b}+\frac{b}{a}-2 =\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{a}{b}+\frac{b}{a}-2 =(\frac{a}{b}+\frac{b}{a})^2+\frac{a}{b}+\frac{b}{a}-4Đặt
\frac{a}{b}+\frac{b}{a}=t\Rightarrow |t|\ge2Xét hàm:
f(t)=t^2+t-4 trên
(-\infty-2]\cup[2;+\infty) ta được:
\min_{|t|\ge2} f(t)=-2\Leftrightarrow t=-2Vậy Min$F=
-2\Leftrightarrow a=-b$