b. Ta có: sin540=cos360⇔sin3.180=cos2.180$\Leftrightarrow 3.\sin 18^0-4\sin^3 18^0=1-2\sin^2 18^0⇔4sin3180−2sin2180−3sin180+1=0\Leftrightarrow (\sin 18^0-1)(4\sin^2 18^0+2\sin 18^0-1)=0 (1)Do0<\sin 18^0<1 nên 4\sin^2 18^0+2\sin 18^0-1=0\Leftrightarrow \sin18^o=\frac{-1+\sqrt5}{4}Và do đó suy ra \cos 18^0=\sqrt{1-\sin^2 18^0}=\sqrt{\frac{5}{8}+\frac{\sqrt5}{8}}$
b. Ta có: \sin 54^0=\cos 36^0 \Leftrightarrow \sin3.18^0=\cos 2.18^0$\Leftrightarrow 3.\sin 18^0-4\sin^3 18^0=2\sin^2 18^0-1\Leftrightarrow 4\sin^3 18^0-2\sin^2 18^0-3\sin 18^0+1=0 \Leftrightarrow (\sin 18^0-1)(4\sin^2 18^0+2\sin 18^0-1)=0 (1)Do 0<\sin 18^0<1 nên 4\sin^2 18^0+2\sin 18^0-1=0\Leftrightarrow \sin18^o=\frac{-1+\sqrt5}{4}Và do đó suy ra \cos 18^0=\sqrt{1-\sin^2 18^0}=\sqrt{\frac{5}{8}+\frac{\sqrt5}{8}}$
b. Ta có:
\sin 54^0=\cos 36^0 \Leftrightarrow \sin3.18^0=\cos 2.18^0$\Leftrightarrow 3.\sin 18^0-4\sin^3 18^0=
1-2\sin^2 18^0
\Leftrightarrow 4\sin^3 18^0-2\sin^2 18^0-3\sin 18^0+1=0 \Leftrightarrow (\sin 18^0-1)(4\sin^2 18^0+2\sin 18^0-1)=0 (1)
Do 0<\sin 18^0<1
nên 4\sin^2 18^0+2\sin 18^0-1=0\Leftrightarrow \sin18^o=\frac{-1+\sqrt5}{4}
Và do đó suy ra \cos 18^0=\sqrt{1-\sin^2 18^0}=\sqrt{\frac{5}{8}+\frac{\sqrt5}{8}}$