Sử dụng bất đẳng thức (a+b)3=a3+b3+3ab(a+b)Ta có.x=3√27+√713108+3√27−√713108−13⇔x+13=3√27+√713108+3√27−√713108⇔(x+13)3=(3√27+√713108+3√27−√713108)3⇔(x+13)3=27+√713108+27−√713108+33√27+√713108.3√27−√713108(x+13) ⇔(x+13)3=12+3.19(x+13)⇔x3+x2+13x+127=12+13x+19⇔x3+x2−1=−2354
Sử dụng
hằng đẳng thức
(a+b)3=a3+b3+3ab(a+b)Ta có.
x=3√27+√713108+3√27−√713108−13⇔x+13=3√27+√713108+3√27−√713108⇔(x+13)3=(3√27+√713108+3√27−√713108)3⇔(x+13)3=27+√713108+27−√713108+33√27+√713108.3√27−√713108(x+13) ⇔(x+13)3=12+3.19(x+13)⇔x3+x2+13x+127=12+13x+19⇔x3+x2−1=−2354