¸.·’*★Unnamed★secret.·’*★*¸.·’
For all nonnegative real numbers
a,b and
c, no two of which aer zero
.Prove that: $\
color{blue}{\frac{1}{(a+b)^2}+\frac{1}{(b+c)^2}+\frac{1}{(c+a)^2}\geq \frac{3\sqrt{3abc(a+b+c)}(a+b+c)^2}{4(ab+bc+ca)^3
}}$
Bất đẳng thức
¸.·’*★Unnamed★secret.·’*★*¸.·’
For all nonnegative real numbers
a,b and
c, no two of which aer zero
.Prove that:
1(a+b)2+1(b+c)2+1(c+a)2≥3√3abc(a+b+c)(a+b+c)24(ab+bc+ca)3
Bất đẳng thức
¸.·’*★Unnamed★secret.·’*★*¸.·’
For all nonnegative real numbers
a,b and
c, no two of which aer zero
.Prove that: $\
color{blue}{\frac{1}{(a+b)^2}+\frac{1}{(b+c)^2}+\frac{1}{(c+a)^2}\geq \frac{3\sqrt{3abc(a+b+c)}(a+b+c)^2}{4(ab+bc+ca)^3
}}$
Bất đẳng thức