.·’*★Use
d.·’★to
.·’*★.·’*For all nonnegative real numbers $a,b$ and $c.$ Prove that: $\color{
pink}{\sum_{cyc}a^2\sum_{cyc}a(b+c)\sum_{cyc}\frac{1}{(b+c)^2}\geq (a+b+c)^4}$
Bất đẳng thức
Prove
t
hat: $\co
lor{blue}{\sum_{cyc}a^2\sum_{cyc}a(b+c)\sum_{cyc}\frac{1}{(b+c)^2}\geq (a+b+c)^4}$For all nonnegative real numbers $a,b$ and $c.$ Prove that: $\color{
blue}{\sum_{cyc}a^2\sum_{cyc}a(b+c)\sum_{cyc}\frac{1}{(b+c)^2}\geq (a+b+c)^4}$
Bất đẳng thức
.·’*★Use
d.·’★to
.·’*★.·’*For all nonnegative real numbers $a,b$ and $c.$ Prove that: $\color{
pink}{\sum_{cyc}a^2\sum_{cyc}a(b+c)\sum_{cyc}\frac{1}{(b+c)^2}\geq (a+b+c)^4}$
Bất đẳng thức