Tìm max: $S=\sum_{k=1}^{n}(a-a_1)(a-a_2)........(a-a_{k-1})a_k(a-a_{k+1}
).....(a-a_n)
Cho\left\{
a>0a1;a2;....;an∈[0;a] \right..
Tìm max: S=\sum_{k=1}^{n}(a-a_1)(a-a_2)........(a-a_{k-1})a_k(a-a_{k+1}
).....(a-a_n) $
Bất đẳng thức
Tìm max:
S=\sum_{k=1}^{n}(a-a_1)(a-a_2)........(a-a_{k-1})a_k(a-a_{k+1}.....(a-a_n) Cho
\left\{ \begin{array}{l} a>0\\ a_1;a_2;....;a_n \in [0;a] \end{array} \right.. Tìm max:
S=\sum_{k=1}^{n}(a-a_1)(a-a_2)........(a-a_{k-1})a_k(a-a_{k+1}.....(a-a_n)
Bất đẳng thức
Tìm max: $S=\sum_{k=1}^{n}(a-a_1)(a-a_2)........(a-a_{k-1})a_k(a-a_{k+1}
).....(a-a_n)
Cho \left\{
\begin{array}{l} a>0\\ a_1;a_2;....;a_n \in [0;a] \end{array} \right..
Tìm max: S=\sum_{k=1}^{n}(a-a_1)(a-a_2)........(a-a_{k-1})a_k(a-a_{k+1}
).....(a-a_n) $
Bất đẳng thức