aI giup EM VAI BAI TAP CO THUONG LON NEK
1 , CHUNG MINH RANG
$(\sqrt{a} +\sqrt{b})^{8} \geq 64ab(a+b)^{2} \forall a,b \geq0
$2,
$chung minh rang 3*a^{3} + 7*b^{3} \geq 9ab^{2}
$ 3,
$cho a,b,c,d >0, \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}+\frac{1}{d+1} \geqslant 3
$4 ,
$cho x_{1},x_{2} ,,............x_{n} >0 va \frac{1}{1+x_{1}}+........+\frac{1}{1+x_{n}} \geqslant n-1
$$chung minh rang x_{1}.x_{2}............x_{n} \leq \frac{1}{(n-1)^{n}}
$
Bất đẳng thức
aI giup EM VAI BAI TAP CO THUONG LON NEK
1 , CHUNG MINH RANG(\sqrt{a} +\sqrt{b})^{8} \geq 64ab(a+b)^{2} \forall a,b \geq02, chung minh rang 3*a^{3} + 7*b^{3} \geq 9ab^{2} 3,cho a,b,c,d >0, \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}+\frac{1}{d+1} \geqslant 34 ,cho x_{1},x_{2} ,,............x_{n} >0 va \frac{1}{1+x_{1}}+........+\frac{1}{1+x_{n}} \geqslant n-1chung minh rang x_{1}.x_{2}............x_{n} \leq \frac{1}{(n-1)^{n}}
Bất đẳng thức
aI giup EM VAI BAI TAP CO THUONG LON NEK
1 , CHUNG MINH RANG
$(\sqrt{a} +\sqrt{b})^{8} \geq 64ab(a+b)^{2} \forall a,b \geq0
$2,
$chung minh rang 3*a^{3} + 7*b^{3} \geq 9ab^{2}
$ 3,
$cho a,b,c,d >0, \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}+\frac{1}{d+1} \geqslant 3
$4 ,
$cho x_{1},x_{2} ,,............x_{n} >0 va \frac{1}{1+x_{1}}+........+\frac{1}{1+x_{n}} \geqslant n-1
$$chung minh rang x_{1}.x_{2}............x_{n} \leq \frac{1}{(n-1)^{n}}
$
Bất đẳng thức