Đk: x≥12Pt ⇔4x2+3x−7=4(√x3+3x2−2)+2(√2x−1−1)
⇔+4(x−1)(x+2)2√x3+3x2+2+4x−1√2x−1+1−(x−1)(4x+7)=0
⇔(x−1)[4(x+2)2√x3+3x2+2+4√2x−1+1−(4x+7)]=0
⇔x=1∨4(x+2)2√x3+3x2+2+4√2x−1+1−4x−7=0 (∗)
Xét hàm số f(x)=4(x+2)2√x3+3x2+2+4√2x−1+1−4x−7,x∈[12;+∞) thì f(x)>0,∀x∈[12;+∞)
⇒ Pt (∗) vô nghiệm