|
b, Đặt $(C_1): y=x^2, \quad(C_2): y=x^2/8, \quad(C_3): y=8/x, \quad$ Ta có: $(C_1) \cap (C_2) : x^2=x^2/8 \Leftrightarrow x=0$ $(C_3) \cap (C_2) : 8/x=x^2/8 \Leftrightarrow x=4$ $(C_1) \cap (C_3) : x^2=8/x \Leftrightarrow x=2$ Diện tích hình cần tìm là: $S=\int\limits_{0}^{2}\left| { x^2-x^2/8} \right|dx+\int\limits_{2}^4\left| { 8/x-x^2/8} \right|dx$ $=\int\limits_{0}^{2}7x^2/8dx+\int\limits_{2}^4(8/x-x^2/8)dx$
$=\dfrac{7}{3} +8\ln 2-\dfrac{7}{3} =8\ln 2$
|