|
a, Ta co $u_{n}=\frac{2n-3}{3n+1}\geq \frac{-1}{4}, \forall n\in N^{*}$
Lai co $u_{n}=\frac{2n-3}{3n+1}<\frac{2n-3}{3n}<\frac{2n}{3n}=\frac{2}{3}, \forall n\in N^{*}$
$\Rightarrow \frac{-1}{4}\leq u_{n}<\frac{2}{3}, \forall n\in N^{*} \Rightarrow u_{n}$ bi chan.
b, Ta co $u_{n}=\frac{n^{2}+5}{3n^{2}-2}\leq 6, \forall n\in N^{*}$
Lai co $u_{n}=\frac{n^{2}+5}{3n^{2}-2}>\frac{n^{2}}{3n^{2}-2}>\frac{n^{2}}{3n^2}>\frac{1}{3}$
$\Rightarrow \frac{1}{3}< u_{n} \leq 6, \forall n\in N^{*}\Rightarrow u_{n}$ bi chan.
d, Ta co $u_{n}=\frac{n-1}{\sqrt{n^{2}+1}}\geq 0, \forall n\in N^{*}$
Lai co $u_{n}=\frac{n-1}{\sqrt{n^{2}+1}}\leq \frac{n-1}{\sqrt{n^{2}}}=\frac{n-1}{n}=1-\frac{1}{n}<1$
$\Rightarrow 0\leq u_{n}<1, \forall n\in N^{*}\Rightarrow u_{n}$ bi chan.
|
|
Trả lời 01-01-13 09:29 PM
|
|