|
Ta có $\frac{2013\sin x + x\cos x - 4x\sin x - x(4x - 2014)}{x^2 + x\sin x}$ $=\frac{-4x(x+\sin x)+2013(x +\sin x)+x(1+ \cos x)}{x(x + \sin x)}$ $=-4+\frac{2013}{x}+\frac{1+ \cos x}{x + \sin x}$ $=-4+2013 (\ln x)'+(\ln (x+\sin x))'$ Vậy $\int\frac{2013\sin x + x\cos x - 4x\sin x - x(4x - 2014)}{x^2 + x\sin x}dx$ $=\boxed{-4x +2013 \ln x + \ln (x+\sin x)+ C} $
|