Chứng minh rằng: Nếu tam giác $ABC$ thỏa mãn $1$ trong các điều kiện sau thi là tam giác cân
$1/$ ${a^2}\sin 2B + {b^2}\sin 2A = {c^2}\cot \frac{C}{2}$
$2/$ $\frac{{1 + \cos B}}{{\sin B}} = \frac{{2a + c}}{{\sqrt {4{a^2} - {c^2}} }}$
$3/$ $\frac{\cos ^2A + \cos^2B}{\sin^2A + \sin ^2B} = \frac{1}{2}(\cot {^2}A + \cot {^2}B)$
$4/$ $\tan A + 2\tan B = \tan A\tan^2B$
$1/$ ${a^2}\sin 2B + {b^2}\sin 2A = {c^2}\cot g\frac{C}{2}$
$\begin{array}{l}
 \Leftrightarrow {\sin ^2}A\sin 2B + {\sin ^2}B\sin 2A = {\sin ^2}C\cot g\frac{C}{2}\\
 \Leftrightarrow \frac{{1 - c{\rm{os}}2A}}{2}\sin 2B + \frac{{1 - c{\rm{os}}2B}}{2}\sin 2A = \sin C.2\sin \frac{C}{2}c{\rm{os}}\frac{C}{2}\frac{{c{\rm{os}}\frac{C}{2}}}{{\sin \frac{C}{2}}}\\
 \Leftrightarrow \frac{{\sin 2A + \sin 2B}}{2} - \frac{1}{2}\sin (2A + 2B) = \sin C(1 + \cos C)
\end{array}$
$\Leftrightarrow \sin (A + B)c{\rm{os}}(A - B) + \frac{1}{2}\sin 2C = \sin C(1 + \cos C)       (1)$
(chú ý  $2A + 2B + 2C = 2\pi  \Rightarrow \sin (2A + 2B) =  - \sin 2C$)
Vì vậy,($1$) tương đương   $\sin C\left[ {c{\rm{os}}(A - B) + \cos C} \right] = \sin C(1 + \cos C)$
       $\begin{array}{l}
 \Leftrightarrow c{\rm{os}}(A - B) + \cos C = 1 + \cos C(\sin C > 0)\\
 \Leftrightarrow c{\rm{os(A - B) = 1}}\\
 \Leftrightarrow A = B
\end{array}$
Từ đó suy ra $DPCM$
$2/$ ta có     $\frac{{1 + \cos B}}{{\sin B}} = \frac{{2a + c}}{{\sqrt {4{a^2} - {c^2}} }}$
      $\begin{array}{l}
 \Leftrightarrow \frac{{{{(1 + \cos B)}^2}}}{{(1 + \cos B)(1 - \cos B)}} = \frac{{{{(2a + c)}^2}}}{{(2a + c)(2a - c)}}\\
 \Leftrightarrow \frac{{1 + \cos B}}{{1 - \cos B}} = \frac{{2a + c}}{{2a - c}}
\end{array}$
     $ \Leftrightarrow 1 + \frac{{2\cos B}}{{1 - \cos B}} = 1 + \frac{{2c}}{{2a - c}}              (1)$
Từ đo theo định lý hàm số sin ta có
$(1) \Leftrightarrow \frac{{\cos B}}{{1 - \cos B}} = \frac{{\sin C}}{{2\sin A - \sin C}}$
$\begin{array}{l}
 \Leftrightarrow 2\sin A\cos B - \sin C\cos B = \sin C - \sin C\cos B\\
 \Leftrightarrow \sin (A + B) + \sin (A - B) = \sin C\\
 \Leftrightarrow \sin (A - B) = 0\\
 \Leftrightarrow A = B
\end{array}$
Ta có $DPCM$
$3/$ ta có    $\frac{{c{\rm{o}}{{\rm{s}}^2}A + c{\rm{o}}{{\rm{s}}^2}B}}{{{{\sin }^2}A + {{\sin }^1}B}} = \frac{1}{2}(\cot {g^2}A + \cot {g^2}B)$
       $\begin{array}{l}
 \Leftrightarrow \frac{{c{\rm{o}}{{\rm{s}}^2}A}}{{{{\sin }^2}A + {{\sin }^2}B}} - \frac{{c{\rm{o}}{{\rm{s}}^2}A}}{{2{{\sin }^2}A}} = \frac{{c{\rm{o}}{{\rm{s}}^2}B}}{{2{{\sin }^2}B}} - \frac{{c{\rm{o}}{{\rm{s}}^2}B}}{{{{\sin }^2}A + {{\sin }^2}B}}\\
 \Leftrightarrow \frac{{c{\rm{o}}{{\rm{s}}^2}A({{\sin }^2}A - {{\sin }^2}B)}}{{2{{\sin }^2}A({{\sin }^2}A + {{\sin }^2}B)}} = \frac{{c{\rm{o}}{{\rm{s}}^2}B({{\sin }^2}A - {{\sin }^2}B)}}{{2{{\sin }^2}B({{\sin }^2}A + {{\sin }^2}B)}}\\
 \Leftrightarrow ({\sin ^2}A - {\sin ^2}B)(\cot {g^2}A - \cot {g^2}B) = 0
\end{array}$
     $ \Leftrightarrow (\sin A - \sin B)(\sin A + \sin B)(\cot gA - \cot gB)(\cot gA + \cot gB) = 0  (1)$
Do trong mọi tam giác $ABC$ thì   $\sin A + \sin B > 0,\cot gA + \cot gB\# 0$
Do đó, $(1) \Leftrightarrow (\sin A - \sin B)(\cot gA - \cot gB) = 0$
      $ \Leftrightarrow \left[ \begin{array}{l}
\sin A = \sin B\\
\cot gA = \cot gB
\end{array} \right. \Leftrightarrow A = B$
Ta có $DPCM$

4/ $tgA + 2tgB = tgAt{g^2}B$     
  $\Leftrightarrow tgA(1 - t{g^2}B) =  - 2tgB                             (1)$
Do $1 - t{g^2}B\# 0$( vì nếu trái lại thì $VT(1)=0,VP91)\neq 0$),nên
 $(1) \Leftrightarrow tgA = \frac{{ - 2tgB}}{{1 - t{g^2}B}}$
$ \Leftrightarrow tgA =  - tg2B                                           (2)$
Do trong moi tam giác thì $A>0,B>0$ ,nên
$(2) \Leftrightarrow A + 2B = \pi  \Leftrightarrow A + 2B = A + B + C \Leftrightarrow B = C$
Ta có $DPCM$


Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003