Trong tam giác $ABC$, hai hệ thức sau có tương đương không ?
$\frac{{\sin A + \sin B+\sin C}}{{\cos A + \cos B + \cos C}} = \sqrt 3 $ và $sin3A+sin3B+sin3C=0$
Ta có :      $\frac{{\sin A + \sin B+\sin C}}{{\cos A + \cos B + \cos C}} = \sqrt 3 $
$\begin{array}{l}
 \Leftrightarrow (\sin A - \sqrt 3 \cos A) + (\sin B - \sqrt 3 \cos B) + (\sin C - \sqrt 3 \cos C) = 0\\
 \Leftrightarrow \left( {\frac{1}{2}\sin A - \frac{{\sqrt 3 }}{2}\cos A} \right) + \left( {\frac{1}{2}\sin B - \frac{{\sqrt 3 }}{2}\cos B} \right) + \left( {\frac{1}{2}\sin C - \frac{{\sqrt 3 }}{2}\cos C} \right) = 0\\
 \Leftrightarrow \sin (A - {60^0}) + \sin (B - {60^0}) + \sin (C - {60^0}) = 0\\
 \Leftrightarrow 2\sin (\frac{{A + B}}{2} - {60^0})c{\rm{os}}\frac{{A - B}}{2} + 2\sin (\frac{C}{2} - {30^0})c{\rm{os}}(\frac{C}{2} + {30^0}) = 0(1)
\end{array}$

Vì  $(\frac{{A + B}}{2} - {60^0}) + (\frac{C}{2} - {30^0}) = 0$

Nên từ $(1)$ suy ra :

$\frac{{\sin A + \sin B+\sin C}}{{\cos A + \cos B + \cos C}} = \sqrt 3 $
$\begin{array}{l}
 \Leftrightarrow \sin (\frac{C}{2} - {30^0})c{\rm{os}}\frac{{A - B}}{2} = \sin (\frac{C}{2} - {30^0})c{\rm{os}}(\frac{C}{2} - {30^0})\\
 \Leftrightarrow \sin (\frac{C}{2} - {30^0})\left[ {c{\rm{os}}\frac{{A - B}}{2} - c{\rm{os}}(\frac{C}{2} - {{30}^0})} \right] = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
\sin (\frac{C}{2} - {30^0}) = 0\\
c{\rm{os}}\frac{{A - B}}{2} = c{\rm{os}}(\frac{C}{2} - {30^0}
\end{array} \right.\\
 \Leftrightarrow \left[ \begin{array}{l}
C = {60^0}\\
\frac{{A - B}}{2} = \frac{C}{2} - {30^0}\\
\frac{{B - A}}{2} = \frac{C}{2} - {30^0}
\end{array} \right.\\
 \Leftrightarrow \left[ \begin{array}{l}
A = {60^0}\\
B = {60^0}\\
C = {60^0}
\end{array} \right.
\end{array}$

Như vậy

$\frac{{\sin A + \sin B+\sin C}}{{\cos A + \cos B + \cos C}} = \sqrt 3 $ tương đương với sự kiện tam giác $ABC$ có ít nhất $1$ góc =${60^0}$

Mặt khác,ta có

$Sin3A+sin3B+sin3C=0$$ \Leftrightarrow 2\sin \frac{{3A + 3B}}{2}c{\rm{os}}\frac{{3A - 3B}}{2} + 2\sin \frac{{3C}}{2}c{\rm{os}}\frac{{3C}}{2} = 0(2)$

Do $(\frac{{3A + 3B}}{2}) + \frac{{3C}}{2} = {270^0} \Rightarrow \sin \frac{{3A + 3B}}{2} =  - c{\rm{os}}\frac{{3C}}{2};\sin \frac{{3C}}{2} =  - c{\rm{os}}\frac{{3A + 3B}}{2}$

Vậy từ $(2)$ suy ra

$Sin3A+sin3B+sin3C=0$
$\begin{array}{l}
 \Leftrightarrow c{\rm{os}}\frac{{3C}}{2}c{\rm{os}}\frac{{3A - 3B}}{2} + c{\rm{os}}\frac{{3C}}{2}c{\rm{os}}\frac{{3A + 3B}}{2} = 0\\
 \Leftrightarrow c{\rm{os}}\frac{{3C}}{2}(c{\rm{os}}\frac{{3A - 3B}}{2} + c{\rm{os}}\frac{{3A + 3B}}{2}) = 0\\
 \Leftrightarrow c{\rm{os}}\frac{{3C}}{2}c{\rm{os}}\frac{{3B}}{2}c{\rm{os}}\frac{{3A}}{2} = 0\\
 \Leftrightarrow \left[ \begin{array}{l}
A = {60^0}\\
B = {60^0}\\
C = {60^0}
\end{array} \right.
\end{array}$

Như thế $Sin3A+sin3B+sin3C=0$ tương đương với sự kiện tam giác $ABC$ có ít nhất $1$ góc =${60^0}$

KẾT LUẬN: $\frac{{\sin A + \sin B+\sin C}}{{\cos A + \cos B + \cos C}} = \sqrt 3 $$\Leftrightarrow sin3A+sin3B+sin3C=0$

Nhận xét

Tương tự ta có kết quả sau: Trong tam giác $ABC$, hệ thức $sin5A+sin5B+sin5C=0$ tương đương với sự kiện tam giác $ABC$ có ít nhất $1$ góc bằng ${36^0}$ hoặc ${108^0}$. Điều này dựa vào công thức sau :

 $\sin 5A + \sin 5B + \sin 5C = 4\cos \frac{{5A}}{2}c{\rm{os}}\frac{{5B}}{2}c{\rm{os}}\frac{{5C}}{2}(*)$

Từ đó suy ra kết quả

Thẻ

Lượt xem

914
Chat chit và chém gió
  • Việt EL: ... 8/21/2017 8:20:01 AM
  • Việt EL: ... 8/21/2017 8:20:03 AM
  • wolf linhvân: 222 9/17/2017 7:22:51 AM
  • dominhdai2k2: u 9/21/2017 7:31:33 AM
  • arima sama: helllo m 10/8/2017 6:49:28 AM
  • ๖ۣۜGemღ: Mọi người có thắc mắc hay cần hỗ trợ gì thì gửi tại đây nhé https://goo.gl/dCdkAc 12/6/2017 8:53:25 PM
  • anhkind: hi mọi người mk là thành viên mới nè 12/28/2017 10:46:02 AM
  • anhkind: party 12/28/2017 10:46:28 AM
  • Rushia: . 2/27/2018 2:09:24 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:25 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:26 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:27 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:28 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:29 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:30 PM
  • Rushia: . 2/27/2018 2:09:31 PM
  • Rushia: .. 2/27/2018 2:09:31 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:32 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:33 PM
  • Rushia: . 2/27/2018 2:09:34 PM
  • ๖ۣۜBossღ: c 3/2/2018 9:20:18 PM
  • nguoidensau2k2: hello 4/21/2018 7:46:14 PM
  • ☼SunShine❤️: Vẫn vậy <3 7/31/2018 8:38:39 AM
  • ☼SunShine❤️: Bên này text chữ vẫn đẹp nhất <3 7/31/2018 8:38:52 AM
  • ☼SunShine❤️: @@ lại càng đẹp <3 7/31/2018 8:38:59 AM
  • ☼SunShine❤️: Hạnh phúc thế sad mấy câu hỏi vớ vẩn hồi trẩu vẫn hơn 1k xem 7/31/2018 8:41:00 AM
  • tuyencr123: vdfvvd 3/6/2019 9:30:53 PM
  • tuyencr123: dv 3/6/2019 9:30:53 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: dv 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:54 PM
  • tuyencr123: d 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:55 PM
  • tuyencr123: đ 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:56 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:57 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: đ 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:58 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:30:59 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: d 3/6/2019 9:31:00 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:01 PM
  • tuyencr123: đ 3/6/2019 9:31:01 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:02 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:03 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:04 PM
  • tuyencr123: d 3/6/2019 9:31:05 PM
  • tuyencr123: đ 3/6/2019 9:31:05 PM
  • tuyencr123: bb 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:06 PM
  • tuyencr123: b 3/6/2019 9:31:07 PM
  • tuyencr123: b 3/6/2019 9:31:38 PM
  • Tríp Bô Hắc: cho hỏi lúc đăng câu hỏi em có thấy dòng cuối là tabs vậy ghi gì vào tabs vậy ạ 7/15/2019 7:36:37 PM
  • khanhhuyen2492006: hi 3/19/2020 7:33:03 PM
  • ngoduchien36: hdbnwsbdniqwjagvb 11/17/2020 2:36:40 PM
  • tongthiminhhangbg: hello 6/13/2021 2:22:13 PM
Đăng nhập để chém gió cùng mọi người
  • hoàng anh thọ
  • Thu Hằng
  • Xusint
  • HọcTạiNhà
  • lilluv6969
  • ductoan933
  • Tiến Thực
  • my96thaibinh
  • 01668256114abc
  • Love_Chishikitori
  • meocon_loveky
  • gaprodianguc95
  • smallhouse253
  • hangnguyen.hn95.hn
  • nguyencongtrung9744
  • tart
  • kto138
  • dphonglkbq
  • ๖ۣۜPXM๖ۣۜMinh4212♓
  • huyhieu10.11.1999
  • phungduyen1403
  • lalinky.ltml1212
  • trananhvan12315
  • linh31485
  • thananh133
  • Confusion
  • Hàn Thiên Dii
  • •♥•.¸¸.•♥•Furin•♥•.¸¸.•♥•
  • dinhtuyetanh000
  • LeQuynh
  • tuanmotrach
  • bac1024578
  • truonglinhyentrung
  • Lê Giang
  • Levanbin147896325
  • anhquynhthivu
  • thuphuong30012003